	PlusTools Manual
	Version 3

	[image: image1.png]
	+Tools® Manual
Revised for +Tools 4 © 1999-2004, Yves Champollion

Table of Contents

2Presentation

2Installation

2Removing PlusTools

2+Tools

3Files

4Find

5Stats

5Convert

7Pass

8Compare

11Keys

12+Align

12Presentation

12Instructions for use

15+ Extract

17+Tweaks

25Credits

25Appendix I

28Appendix II

28Appendix III: SGML/XML

Presentation

+Tools is a set of tools for the translation industry. +Tools works on Ms-Word 97 and higher versions (Ms-Word 2000, Ms-Word 2002, Ms-Word 2003 and higher versions on a PC), as well as on Ms-Word 98 and higher versions (Ms-Word 2001, Ms-Word X, Ms-Word 2004 and higher versions on a Mac, all OS included from OS7 to OSX).

+Tools is mostly used by translators that work with Wordfast (www.wordfast.net). Most functions do not actually require Wordfast, except for alignment and term extraction. +Tools is freeware.

+Tools rests on a powerful file explorer (up to 1,000 files can be selected in up to 1,000 recursed sub-directories). This facility lets you perform search/replace, statistics, macro execution, conversions, file tagging etc. on hundreds of files in one single action.

Installation

In Ms-Word, use the Tools/Templates & Add-Ins menu to add the PlusTools.dot template to your list of templates.

Note: if, at any time, Ms-Word asks you whether you want to "save" changes made to the PlusTools.dot template, answer no. The PlusTools template should stay unchanged.

Removing PlusTools

Ms-Word should be closed. Use you system's file search utility to locate all PlusTools files. Delete all PlusTools files (like plustools.dot, plustools.ini, etc).

PlusTools does not make changes to you system or to Word, it does not add registry base entries, it does not create hidden, secret files in your hard disk

+Tools

If the PlusTools icon ([image: image2.png]) is not visible, make sure that PlusTools is activated in Ms-Word's list of templates (use the Tools/Templates & Add-in menu to see the list of templates). You can also use the View/Toolbar menu to display the PlusTools icon.

Click the +Tools icon or press Alt+F2 to open +Tools.

Files

[image: image3.png]
Before launching an action, you must select the document(s) to be processed. There are 2 possible cases:

1. When you clicked the +Tools menu, one or more document(s) were already opened in Ms-Word. These documents will appear in the Files list.

2. When you clicked the +Tools menu, no document was opened. +Tools will give you the possibility to explore your hard disk and see the contents of directories.

Click to check the files you need to process. To select/de-select all files, use the Ctrl+A shortcut.

Find

[image: image4.png]
This section lets you perform a find and/or replace action on the selected files.

If you wish to use formatting options for your search: open a document, setup the formatting options, close you document. +Tools will apply the formatting options you specified.

When a searched item is found, the following choices are offered:

[image: image5.png]
· Edit: Allows you to pause and edit the document. After editing, you can re-start the search where you left it by pressing Alt-F2 or clicking the +Tools icon.

· Next: ignores the currently found item and searches for the next item.

· Replace: if "Confirm" has been asked for search/replace actions, click this option to replace the current item and move to the next.

· Replace all: cancels the "Confirm" option and executes a global find/replace on all files.

· Next doc: cancels the find/replace for the current document and continues with the next one.

· Quit: quits the find/replace operation.

Stats

[image: image6.png]
This section lets you perform Word's usual Statistics on the selected files, with a final report giving statistics per individual file, and a global total.

Convert

File

This section lets you convert files into the formats that are listed.

There is also a possibility to change the file's extension.

PDF (sorry, not available on a Mac)
This pane offers two features: 1. extract textual contents from a PDF document currently opened with Acrobat Reader in the background, and 2. convert text from a currently opened document (typewriter-style, where all lines end with a paragraph mark) into regular text with whole paragraphs.

Both tasks are uncertain. The PDF format was created at first to be a read-only format, this is why it is CAT tool-unfriendly. Extracting text from Acrobat Reader is therefore uncertain.

Re-creating whole paragraphs in a document where each line ends with a paragraph mark (carriage return) is also an uncertain task for a machine, since it supposes an understanding of the text. A 90% success rate is usually achieved, however.

Pass

[image: image7.png]
This section allows you recover a forgotten protection password for a document. Here, password means the password specified in the Tools/Protect dialog box, used to protect the document against writing (but not against reading), as when setting a "revision" mode. In no way can PlusTools recover a password used when saving a document, protecting further access to the document itself.

Open the document, start PlusTools. Click the Find the protection password button.

Prior to starting the search, you can give a few clues, if you fuzzily remember your password, which will allow PlusTools to work faster. PlusTools uses a so-called "brute force" algorithm to test huge numbers of possible passwords until the correct one is found. This is why, for passwords longer than 6 or 7 characters, the time needed for testing all possibilities can run in hours (a fast computer will of course shorten the delay).

Compare

Monolingual

[image: image8.png]
This utility will compare all paragraphs in two very similar documents that have the same number of paragraphs. Very similar means that the two documents were identical, but one document perhaps was spell-checked or revised by a person who may have edited words or sentences, but not added or deleted entire paragraphs.

Bilingual

[image: image9.png]
This utility will compare segments in two very similar segmented documents. Very similar means that the two documents were identical, but one document perhaps was spell-checked or revised by a person who may have edited words or sentences, but not added or deleted entire paragraphs.

Track Translation

[image: image10.png]
When a Project Manager (PM) oversees the translation done by a group of translators, a typical workflow is:

1. Files are pretranslated (segmented) by the PM;

2. Files are sent to translators, who work on them but do not clean them up;

3. Files are sent back to the PM.

When receiving the returned translated files, the PM may wish to know which 100% matches were edited, perhaps to review and validate them, and which fuzzy matches, if any, were not translated or modified.

+Tools' "Track Translation" feature makes this possible. All files, however, must be "prepared" before being sent out to the translators. Invisible data is being added to these files, allowing the subsequent comparison between the initial state of the file, and its after-translation state. At reporting time, this invisible data is deleted. A Wordfast cleanup also deletes this data. This process does not alter the contents of the files in any way: after the final cleanup, all invisible data has been deleted, and the document is client-ready.

When files are back from translation, PlusTools can read them again and report all:

1. 100% matches that were edited (and remind the PM of what was the original target segment before the translator edited it);

2. fuzzy matches that were not edited.

"Track translation" is available for DOC (Ms Word's native format) and RTF files.

Keys

[image: image11.png]
This feature takes a snapshot of (saves) a given template's shortcuts, and restores them at a later stage. The template must be installed in Ms-Word's Tools/Templates & Add-ins dialog box, and can be even active, during the save and restore operations.

The shortcut snapshot is a file located in the same folder as PlusTools, with the template's name, and a ".key" extension.

This feature is useful when you need to customize shortcuts in a given template, but for some reason, this template has to be frequently re-installed from scratch, and the tedious shortcut customization must be performed again.

Reminder

To customize shortcuts in a template:

1. If the template is currently active, use Ms-Word's Tools/Templates & Add-Ins menu and uncheck this template;

2. make a backup of the template if this is not already done. Open the template as a document using Ms-Word's File/Open menu;

3. use Ms-Word's View/Toolbars/Customize dialog box, then click "Keyboard".

4. Customize shortcuts by assigning them to the relevant macro in the "category" listbox. You may also need to type the former shortcuts in the "New shortcut" box and delete them so they're no longer active);
5. once this is done, save the template on exit.

Important remark: if you need to do the above operation more than once, which is often the case because customizing shortcuts takes some fiddling, always "refresh" the template by overwriting it with a pristine, backed-up version of your template.

+Align

[image: image12.png]
Presentation

+Align's purpose is to generate translation memories from pairs of translated documents, where original documents are called source, and their translations are called target.

A Translation Memory (TM) is a set of Translation Units (TUs), a TU being a pair of one source segment matched to its corresponding translation, the target segment. +Align produces TMs in Wordfast format, which can be exported to the universal TMX format.

Instructions for use

Overview of the workflow:

1. extract all segments from both sets of documents;

2. align (this is a manual operation) all segments;

3. generate the translation memory.

1. The first step is to create two "extraction" files: one containing all source text (all source segments), and one containing all target text (target segments). To so, Wordfast 5.0m or higher must be used.

Start Wordfast. Make sure no document is opened (close the default, empty document if it's there). Go to the Tools tab. Select all source files, then click the "Extract" button. Give a file name for the extraction file (like "source.text" perhaps). Repeat the same operation for target files.

As a result, you now have two "extraction" files, you know their location (the folder in which they are) and their names.

2. Close all documents in Ms-Word. Open the two "extraction files" produced in the previous step. Start PlusTools, go to the +Align tab. Click the Align button. +Align will display either two documents side by side, or one document with a single table, allowing manual alignment and verification.

The Alt+V shortcut allows you to display or hide the ends of the segments. In normal mode, only the 40 first characters of a segment are visible, for a more convenient layout.

Use the F5 function key to bookmark you current location. You can then scroll to any other place in the document. Press F6 to get back to your initial, bookmarked location.

Align segments by adding, deleting, or merging cells. You can either spend a minimum of time by generously deleting the parts that do not align, or spend more time and patiently align the two sides.

Alt+D deletes the current cell, or the cells you selected;

Alt+I inserts a cell before the current cell.

Alt+S splits a cell at the position where the cursor (the insertion point) is located. Alt+S will not function if the selection extends (if text is selected).

Alt+M merges a segment split into two cells. If an abbreviation is splitting a segment, see below.

Alt+A lets you enter an abbreviation (for example: "etc.", or "e.g.") that has caused many segments to be cut at the wrong place. PlusTools will assist you in reassembling those segments.

If you wish to make a pause in your alignment work, save the document(s) you are working on. Ms-Word can be closed. To resume alignment, open the same document(s) again in Word, start PlusTools, go to the +Align tab, click the Align button.

3. Once the alignment is done, leave the document(s) opened in Ms-Word, start PlusTools, go to the +Align tab and click the Create TM button. When the TM has been generated, +Align will ask you to rename and save it (the original copy is in your current MsWord working folder and is named Export.txt - just in case you lose track of your TM after saving it).

Important note: +Align creates Unicode translation memories. You may wish to save them as just "Text-only" if you do not need Unicode, as most western, alphabetical, languages do.

Wordfast can later export this translation memory to the TMX format, merge it with other TMs, reverse it, selectively delete TUs etc. The TM's user name is +A!. It is advised to have aligned TUs penalized when using them for a new translation (see Wordfast's manual for details on penalties).

Raising productivity: Alignment strategies.

Alignment - whatever the tool used - is a time-consuming task. It may appear frustrating at first, but experience and the intelligent use of strategies can considerably speed up the process. Do not rush, see things from far, devise strategies.

With two documents, where the target document is a translation of the source document, alignment accidents can occur for a variety of reasons. When you find an alignment accident, try to use sweeping search-replace actions to restore proper alignment, rather than reconstruct each and every alignment accident manually. Use Alt+F to bring up a dialog box from which you can run sweeping changes to either column.

Example:

You translate from English to French. In the initial phase (Extract, see above), Wordfast segmented both documents, but a particular customer-specific abbreviation has cut many English segments at the wrong place. You may have two source segment like "We met Secr." and "Johnson at the airport", and in French, just one segment: "Nous avons rencontré le Secrétaire Johnson à l'aéroport".

With Alt+F, bring up the Alignment functions dialog box. Merge every cell which ends with Secr. with the following one. It is recommended to check the "Match case" option for added security, and to confirm all merge operations. This way, all segments that were cut by this abbreviation will be re-united.

Other search-replace operations, especially when wildcards are used (see MsWord's help), can save a lot of time when aligning documents.

+ Extract

[image: image13.png]
The purpose of + Extract is to assist the tedious task of extracting terminology from a corpus of documents. No machine will ever fulfill this extraction by itself, because terminology extraction, fundamentally speaking, means sorting out "meaningless" and "meaningful" (or "useful" and "useless", "relevant" and "irrelevant") terms & expressions, and "meaning" resides essentially in the mind of the beholder. Yet, software can be helpful in many respects.

We can distinguish two kinds of term extraction:

· Monolingual term extraction: a glossary is extracted from a monolingual corpus of documents. Later, the glossary can be translated into various languages by translators.

· Multilingual term extraction: a glossary is extracted from existing translation memories. The machine will work as for monolingual term extraction, but will make every effort to spot the corresponding term in the target segment, and offer it as a possible candidate, pending human validation.

+ Extract, in its beta version, offers monolingual term extraction. Various strategies have been used to spot terms that are likely candidates for the intended glossary.

Workflow:

1. Use +Align to specify the corpus of documents that will be used as raw material. Since only the "Source" side is used by +Extract, you can ignore file selection in the target, or right, part of the screen. See +Align for directions on creating a folder where all files should reside. Use copies of files, because +Extract will convert HTML, SGML, XML, RTF, DOC files to a text format, then delete original files.

2. Use the +Extract window to set up the various parameters and strategies to be used, then click "Start".

3. When the process is done, +Extract will open the newly created glossary as a document for manual edition and verification.

Step 1: Locating the raw material (+Align tab)

All the files that will be used as raw material should be visible in the Source file list. An INI file should be visible in the drop-down list right under the files list. This INI file is simply a Wordfast setup that fits the raw material's language. Click the "Extract" button. When +Align has read all source files, it will create a "PtSource.doc" file in the source folder, containing the bare, textual contents of all the files that have been read. +Extract will use this file. You can actually open it, look at it and do any manual editing you want.

Step 2: Setting up the extraction strategy (+Extract tab)

Scan for expressions of up to X words: Since the glossary can contain expressions, you must specify the maximum number of words an expression can have. Note that the total extraction time is roughly a multiple of this number, so keep it as low as possible. The default value is 4.

Ignore words if less than X characters: for obvious reasons, it is recommended to skip very short words. The default value is 3 (which means that all words made of one or two letters will be ignored - except if they are part of an expression).

Ignore expressions used less than X times: this is an important setting. +Extract will keep expressions if they are used more than, or at least, an X number of times in the raw material. Of course, there is a risk of not getting expressions if they are used only one time, but this case is pretty rare.

Ignore words found in Word's dictionary: this setting will ignore words (except if they are part of an expression) that are found in the dictionary currently set up as Word's default spell-checking dictionary. We suppose that the spell-checker contains "common" words. The problem is that a corporation's specific terminology can use "common" words, that are loaded with a particular meaning. The user should decide what's best. The default setting actually does not use this option. However, if the terminology to be extracted is a highly specific jargon of words not found in a common dictionary, this option will save a lot of time. Another idea, if a quick result is expected, is to run term extraction once with this option turned on (which will quickly reveal many "uncommon" terms), and leave another round of extraction without this option for another session devoted to deeper digging.

Ignore words with more than X synonyms. Since MsWord has a thesaurus of synonyms, one statistical approach to determine if a word is "very" common is to count how many synonyms is has. This may prove more fruitful and less restrictive than the spell-checker approach; moreover, a threshold can be defined. Of course, the number of synonyms is not an absolute indicator of a word's commonness - we're dealing with a statistical approach. The word "computer" (9 synonyms in Word 2000's thesaurus) has more synonyms than "workstation" (2 synonyms). The narrower the definition of a term, the less synonyms it usually has; and glossaries tend to use terms with a narrow definition. This, again, is a purely statistical approach, and many counter-examples can be found. The default setting for this option is "On", with a synonym count of 3.

Keep all-uppercase words: this option will unconditionally keep words or expressions that are written in uppercase (but will not keep them if they have less than the minimum number of characters, as defined above).

Ignore words with numbers: this setting will discard words or expression that contain numbers, like XT09 or MML-50.

Ignore words blacklisted in... this will let the user specify a file containing a blacklist. The format is the same as Wordfast's blacklist: a Text-only file containing words or expressions, each entry occupying a paragraph. The size of the list is currently limited to one megabyte. If both the "Dictionary" and "Synonyms" options are not used, I strongly recommend entering a list of stopwords in this blacklist. Stopwords, in this term-extraction context, are words that are both very commonly used, and not supposed to be part of the glossary. Appendix II gives a short list of English stopwords. Although it is rather short, it is enough to weed out a large part of the raw material.

When all settings have been defined, click "Start".

I strongly recommend running tests on a short (and as typical as can be) document, because the extraction process can be rather long. "Short" means around 10 pages. This stage is useful to test the various strategies, and determine the one that's fit for your project.

Step 3: Manual revision

+Extract will bring up a document that contains all extracted terms for manual review and editing. This document resides in the root folder of your hard disk, and is named "Extracted.txt". You can rename it as you wish.

+Tweaks

This feature is designed to run sets of tasks on all files selected in PlusTools' "Files" list.

+Tweaks is a list of tasks that are run from top to bottom on files. The essential tasks are macros (user macros or PlusTools built-in macros) and Find-Replace (FR) actions.

· To add a task, click the list then use the Insert or the Plus (+) key.

· To delete a task, use the Delete or the Minus (-) key.

· To edit a task, use Enter.

· To move a task upwards in the list, use Ctrl+Up.

· To move a task downwards in the list, use Ctrl+Down.

 Tasks have three fields: Action1, Action2, and Switches.

Running macros

Add an entry or edit an existing one and put an existing macro name in the "Action 1" field. The switch should have "/Exe" so that PlusTools knows it has to run the macro named in the Action 1 field:

	MyMacro
	
	/Exe

You can run two macros one after the next this way:

	MyMacro
	MySecondMacro
	/Exe

Passing a string argument to a macro.

A major problem with Word VBA is that you cannot pass an argument to a macro. To solve this problem, PlusTools has an integrated argument conveyor for text variables (String). If you want to pass an argument to a macro, simply enter it in the Action 2 field and have it surrounded with straight quotes like this:

	MyMacro
	"My argument here."
	/Exe

In the same code module as your custom-made "MyMacro", you should add the following function:

Function GetPtArgument() As String

If Windows.Count < 1 Then Exit Function

Dim Vari As Variable

For Each Vari In ActiveDocument.Variables

If Vari.Name = "PtArgument" Then

 GetPtArgument = Vari.Value

 Vari.Delete

 Exit For

Next

End Function

When invoked from within your own macro, this function will return the argument passed in PlusTools' list of tasks. Note that this method is only valid if a document is currently opened, which is normally the case. Here is an example:

Sub MyMacro

Dim T As String

T = GetPtArgument

If T = "My argument here." Then MsgBox "It works!"

End Sub

PlusTools predefined macros

You can use a PlusTools predefined macro by entering it in a task like this:

	CreateTw4winStyles
	
	/Exe

If the macro needs an argument, the format is:

	SelectAllApplyStyle
	"Translatable"
	/Exe

Note that the argument must be enclose in "regular" quotes.

PlusTools predefined macros are not case-sensitive, but they are capitalized here for clarity's sake.

List of PlusTools predefined macros:

	JoinTranslatableText

Sample text before the macro:

 This HTML text is cut

 in short pieces separated

 whith carriage returns.
Sample text after the macro:

 This HTML text is cut in short pieces separated whith carriage returns.

	JoinTranslatableText is used for example when tagging HTML text. It searches for spreads of text that have the Translatable style and rebuilds whole paragraphs by removing paragraph marks and resetting multiple spaces to single spaces.

	SaveCurrentDoc
	Saves the currently opened document.

	SaveCloseCurrentDoc
	Saves then closes the currently opened document

	CreateTw4winStyles
	Creates a standard tw4winInternal style, a standard tw4winExternal style and a Translatable style (character-based, no attributes, looking like the "Normal" style) in the currently opened document.

	SaveAsDoc
	Saves the currently opened file in Word DOC (document) format, whatever its previous format was. To avoid overwriting the currently opened document, a renaming procedure is used:

If the document has no .doc extension, its current extension is changed into .doc

If the document already has a .doc extension, a second ".doc" extension is added.

	SaveAsSimpleText
	Saves the current document as simple text (ANSI)

	SaveAsUnicodeText
	Saves the current document as Unicode text

	SaveAsRTF
	Saves the current document as RTF

	StampNameAndFormat
	Tagging procedures typically take an .html (or .mif, .xml etc.) file, tag it then save it as DOC or RTF for translation. The original name and format must be preserved with this macro before they are lost with a SaveAs macro.

The RestoreNameAndFormat macro, at untagging time, will then be able to restore the file to its original name and format.

	RestoreNameAndFormat
	Restores a file's original name and format, provided they were stamped in the DOC or RTF file using the StampNameAndFormat macro.

	SelectAllApplyStyle
	This macro requires an argument with a style name and applies that style to the entire document's contents.

	CloseCurrentDoc
	Closes the current document without saving it.

	OpenDoc
	This macro takes a complete (path+file) file name as argument and opens it. The opened document becomes the "current" document.

	MessageBox
	This macro takes an argument and displays it in a message box.

Running Find-Replace operations

These operations launch Ms-Word's own Find-replace dialog box over the currently opened document. Right before this is done, all Find/Replace parameters are reset (as when Ms-Word is just started), and the cursor is moved to the beginning of the document.

Text to be found should appear in the Action 1 field and text to be replaced should appear in the Action 2 field. Three switches can be used: /mc (activates Ms-Word's find/replace dialog box' "Match case" checkbox), /ww (activates Ms-Word's find/replace dialog box' "Whole words" checkbox), and /wc (activates Ms-Word's find/replace dialog box' "Use wildcards" checkbox).

For example:

	The cat
	The dog
	/mc

Will replace "The cat" with "The dog" in the entire document, case-sensitive.

Find/replace with formats

The searched text can take a style definition like this:

	The cat+{MyStyle}
	The dog
	

In this case, only the text "The cat" that has a "MyStyle" style will be found.

Multiple search styles can be entered, which is impossible with just Ms-Word:

	The cat+{MyStyle,SecondStyle}
	The dog
	

In this case, only the text "The cat" that has a "MyStyle" or a "SecondStyle" style will be found.

The replacement text can take a style (only one style):

	The cat+{MyStyle,SecondStyle}
	The dog+{ThirdStyle}
	

In this case, only the text "The cat" that has a "MyStyle" or a "SecondStyle" style will be found, and if it is found, it will be replaced with "The dog" with a "ThirdStyle" style.

Batch replacements

The /List switch can make multiple Find-replace operations in one same task. In this case, all elements must be separated with a comma like this:

	Cat,dog,horse
	Carpet,table,chair
	/List

In this case, Cat will be replaced with Carpet, dog with table, and horse with chair. Styles can be also defined, as well as all other switches:

	Cat,dog,horse+{MyStyle,SecondStyle}
	Carpet,table,chair+{ThirdStyle}
	/List

Switches can be combined, here for example /List and /mc:

	Cat,dog,horse+{MyStyle,SecondStyle}
	Carpet,table,chair+{ThirdStyle}
	/List/mc

Switches are not case-sensitive.

Find/replace characters using ANSI codes

You can enter special, or unprintable characters using their codes like this:

©
(decimal), or

&'A9;

(hexadecimal)

where A9 is the hexadecimal code for decimal 169 (so &'A9; means the character with the ANSI code 169, which can also be written ©). The ANSI 169 decimal character is the copyright sign ©.

If &'A9; is between quotes, like "&'A9;", it will considered literally, not a coded character. See the Appendix I for a conversion table that can convert the coded characters found in a Wordfast translation memory into their "natural", or ANSI, equivalents.

Practical application: tagging HTML

PlusTools integrates a pre-set standard HTML tagger. In +Tweaks' list of tweaks, select the "!01 HTML tagger" pre-set tweak list to see how the above methods are applied to produce a functional HTML tagger. Expert localization engineers can write other taggers, or tweak the existing one to tag XML or SGML files, or other text-based tagged formats (like MIF, Quark Xpress StoryCollector etc.) then save it under a different name.

When +Tweaks opens a file that has been selected in PlusTools' "Files" section, if the file has an HTML, SGML or XML format, the file will be opened by Ms-Word as a text file (whether it is unicode or not).

Note a few special switches that are used to make the find-replace operations faster and safer for tagging purposes:

/IntTag: This switch intelligently treats tags as regular HTML tags. You don't need to enter the closing tag, because PlusTools will take care of that. So, you need to enter only and PlusTools will tag it with a tw4winInternal style, but will also tag as internal, as well as the syntax (the same tag, with attributes) and will also do the tagging on tags that are in capitals like .

(before action):
This paper on translation is for you.
(after action):

This paper on translation is for you.

/AttrTag: this switch requires a tag name in the Action 1 field and an attribute name in the Action 2 field, then it will tag the contents of the attribute as "Translatable". For example,

	<img
	alt
	/AttrTag

Will apply a translatable style to the contents of the alt atrtribute in the <img tag.

(before action):

(after action):

/TransTag: this switch will apply a translatable style to text comprised between the opening and closing tags specified in the Action 1 and Action2 fields. For example,
	<declaration>
	</declaration>
	/TransTag

Will apply an untranslatable style to all text comprised between <declaration> and </declaration>.

(before action):
<declaration>Lots of text</declaration>
(after action):

<declaration>Lots of text</declaration>

/UntransTag: this switch will apply a tw4winExternal style to all text comprised between the opening and closing tags specified in the Action 1 and Action2 fields. For example,
	<exclude>
	</exclude>
	/UntransTag

Will apply a tw4winExternal style to all text comprised between <exclude> and </exclude>.

(before action):
<exclude> Secret text</exclude>
(after action):

<exclude> Secret text</exclude>

Setting Wordfast's default tagger and untagger

When an HTML, SGML or XML file is opened in Wordfast for translation, Wordfast runs PlusTools' default tagging utility before translation is started. Wordfast's default tagger is the tweak list called "!01 HTML tagger". However, if you have modified the tagger for special needs and you have saved it under the name "DefTag.txt", then this custom tweak list will be used for tagging.

Likewise, any tweak list named "DefUntag.txt" will be used for untagging files by Wordfast. If no "DefUntag.txt" tweak list exists, Wordfast will default to the "!02 HTML Untagger" preset tweak.

Save files as Unicode when untagging

When PlusTools untags HTML, SGML, or XML files, it saves them in the original file's format. For example, most XML files are in Unicode. After tagging they're changed to DOC (Word) format for translation. After translation and untagging, they're restored to their original Unicode format.

If you are translating from English to Japanese, you may be required to produced unicode files after un-tagging, otherwise the Japanese characters will be lost. To do so, add the "SaveAsUnicode" macro at the end of the HTML untagging procedure.

Handling entities

In the early days of the Internet, bandwith was very scarce (a 1,200 bps modem was a luxury), and most exchanges were English textual information. Engineers used a 7-bit encoding scheme in communications, because the English alphabet fits very well in "words" of 7 bits. A word of 7 bits can hold 128 different characters.

When these complicated Europeans pretended they also wanted to use the Internet, engineers had to move to an 8-bit word length (to make space for the "extended" characters, where accented letters and a few other odd critters, reside). An 8-bit computer "word" can accommodate 256 characters, from code 0 to 255.

And when the rest of the world jumped aboard the bandwagon, 16-bit word length began to appear (various 16-bit schemes, then Unicode), holding 65536 characters.

The problem is that the Universe is awash with antiquated browsers that still have difficulty interpreting the extended sets of characters. But this is not the only problem. The other problem is that since even 256 characters are not enough to accommodate all European, Greek, Russian etc characters, engineers are using character set (charset) definitions. A charset simply tells the application (usually a browser, for HTML) which glyphs should be associated to which characters to render text legible on screen or on paper.

Well-formed HTML documents nowadays have a "meta" tag that specifies which character set is used to display letters like ä (which could also turn into a Russian glyph etc). This HTML meta tag looks like this:

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

The charset used above (iso-8859-1) is the most commonly used one; but every target language will have its own requirements to properly display information. For example, a Greek HTML page would have charset=iso-8859-7, otherwise, the text would appear like äöçàèÖâ etc on many browsers.

Some (many older) HTML pages are still using entities instead of extended/accented characters. In this case, letters like ä or ü are coded ä or ü in the HTML page. They can also be encoded "numerically", in which case you would have ä or ü. Using entities ensures the characters are correctly interpreted by the browser, even in the absence of a charset definition.

From a strict point of view, entities are "legal" because, by birth, HTML is a child of SGML, where entities are legal. Older browsers that can process only HTML 2.0, for example, may not handle charsets properly, but could do fine with entities. On the other hand, with the advent of HTML 4.0 and browsers that support it, the awkward inheritance of SGML is fading away in this respect, and engineers are converting to the new standard.

The current trend is to avoid entities (they inflate the size of the HTML page, are slower to process and transmit, and difficult to read if you have to directly edit the HTML page in text mode). The problem is, a sizable percentage of the billions of HTML pages out there are still containing entities (or worse, a mixture of ANSI characters and entities), and some decision-makers, having limited knowledge of the question, or by fear/uncertainty/doubt of not being read by everybody in this world, may press for entities.

We as translators are rarely decision-makers: the client decides (never take initiatives, like changing character sets etc, without talking to the client first). But we should provide guidance when the client asks for it. This manual does not pretend to exhaust the subject: a serious translator pretending to localize HTML should look for training, or turn to professional advice.

PlusTools can do two things to alleviate the problem sketchily described above:

1. Convert entities found in HTML documents into "real" ANSI characters when tagging files. In other words, the (tagged) HTML page would look like

ça dégage un air de déjà–vu.

and not

&Cced;a dágage un air de déjà–vu.

2. Convert ANSI characters back into entities when untagging.

Depending on the strategy devised together with your client, you can use only point 1, or only point 2, or both. Using 1 but not 2 will result in "modernizing" HTML pages (whether they contain entities, ANSI extended characters, or both as is often the case). But then make sure the HTML page has the correct charset definition in its header's meta tag.

Here are a few values for the charset= parameter found in HTML page headers, e.g.

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

	iso-8859-1
	European languages using the latin-1 character set

	iso-8859-2
	Central European languages

	iso-8859-3
	Southern Europe

	iso-8859-4
	Baltic rim

	iso-8859-5
	Cyrillic

	iso-8859-6-i
	Arabic

	iso-8859-7
	Greek

	iso-8859-8
	Hebrew

	iso-8859-9
	Turkish

	iso-2022-jp
	Japanese (JIS and JIS X 0208, widely used in email)

	x-euc-jp
	Japanese (EUC-JP, for Unix) also: euc-jp

	x-sjis
	Japanese (Shift JIS, for Win/Mac) also: shift_js

	koi8
	Cyrillic (an older standard)

	euc-kr
	Korean (KSC 5601)

	GB2312
	Simplified Chinese (GB 2312/GB Encoding)

	big5
	Cantonese (Traditional Chinese, Big5/HKU)

	iso-8859-10
	Languages based on the latin-6 character set

	iso-8859-13
	Languages based on the latin-7 character set

	iso-8859-15
	Languages based on the latin-9 character set

	utf-8
	Unicode, worldwide

	utf-16
	Unicode, worldwide

Disclaimer: these values are for general information only. There are other possible values. The client/author should decide and/or validate these values. One more time, a translator translates but only advises on such technical matters.

Credits

All ™ trademarks are the property of their respective owners.

Screenshots courtesy of Horváth "Frank" Ferenc.
Appendix I

Sample conversion table to convert coded characters (found in a Wordfast translation memory) into their regular ASCII equivalent. Note that the Wordfast translation memory should first be saved as a Word document before converting it; and that it will not be a valid TM thereafter. This conversion can be useful if you need to re-use the textual content of a Wordfast translation memory for some other purpose.

	"&'93;"
	&'93;

	"&'94;"
	&'94;

	"&'91;"
	&'91;

	"&'92;"
	&'92;

	"&'AB;"
	&'AB;

	"&'BB;"
	&'BB;

	"&'85;"
	&'85;

	"&'96;"
	&'96;

	"&'97;"
	&'97;

	"&'99;"
	&'99;

	"&'A9;"
	&'A9;

	"&'AE;"
	&'AE;

	"&'BC;"
	&'BC;

	"&'BD;"
	&'BD;

	"&'BE;"
	&'BE;

	"&'A0;"
	&'A0;

	"&'9;"
	&'9;

	"&'B;"
	&'B;

Sample conversion table for Romanized Russian into native Russian, and back (courtesy of Doug Edmunds). You may edit this list according to your preference. The second table is for an earlier, non-Unicode character set (Win3.xx and early Win9x).

(copy-paste the following conversion table in an empty document, then load it into +Tools' Text Conversion table)

	SHCH
	Щ

	YA
	Я

	YO
	Ё

	YU
	Ю

	YE
	Е

	KH
	Х

	SH
	Ш

	CH
	Ч

	UI
	Ы

	A
	А

	B
	Б

	C
	Ц

	D
	Д

	E
	Э

	F
	Ф

	G
	Г

	I
	И

	J
	Ж

	K
	К

	L
	Л

	M
	М

	N
	Н

	O
	О

	P
	П

	R
	Р

	S
	С

	T
	Т

	U
	У

	V
	В

	Y
	Й

	Z
	З

	<
	ь

	>
	Ь

	[
	ъ

]
	Ъ

	shch
	щ

	ya
	я

	yo
	ё

	yu
	ю

	ye
	е

	kh
	х

	sh
	ш

	ch
	ч

	ui
	ы

	a
	а

	b
	б

	c
	ц

	d
	д

	e
	э

	f
	ф

	g
	г

	i
	и

	j
	ж

	k
	к

	l
	л

	m
	м

	n
	н

	o
	о

	p
	п

	r
	р

	s
	с

	t
	т

	u
	у

	v
	в

	y
	й

	z
	з

Use the following table if the first one does not give you satisfaction.

	SHCH
	Ù

	YA
	ß

	YO
	¨

	YU
	Þ

	YE
	Å

	KH
	Õ

	SH
	Ø

	CH
	×

	UI
	Û

	A
	À

	B
	Á

	C
	Ö

	D
	Ä

	E
	Ý

	F
	Ô

	G
	Ã

	I
	È

	J
	Æ

	K
	Ê

	L
	Ë

	M
	Ì

	N
	Í

	O
	Î

	P
	Ï

	R
	Ð

	S
	Ñ

	T
	Ò

	U
	Ó

	V
	Â

	Y
	É

	Z
	Ç

	<
	ü

	>
	Ü

	[
	ú

]
	Ú

	shch
	ù

	ya
	ÿ

	yo
	¸

	yu
	þ

	ye
	å

	kh
	õ

	sh
	ø

	ch
	÷

	ui
	û

	a
	à

	b
	á

	c
	ö

	d
	ä

	e
	ý

	f
	ô

	g
	ã

	i
	è

	j
	æ

	k
	ê

	l
	ë

	m
	ì

	n
	í

	o
	î

	p
	ï

	r
	ð

	s
	ñ

	t
	ò

	u
	ó

	v
	â

	y
	é

	z
	ç

Appendix II

List of English stopwords for use with +Extract. Copy-paste the following words into an empty document, replace all commas with paragraph marks, (find "," replace with "^p"), save as text-only.

i,me,my,mine,you,your,yours,he,she,it,his,her,we,us,our,they,their,them,be,am,is,are,was,were,will,have,has,had,make,makes,made,can,could,would,should,may,might,a,an,the,this,that,those,some,many,any,lot,of,and,as,well,but,not,none,neither,over,under,above,with,without,in,into,so,etc,from,all,to,out,up,down,more,less,such,before,after,never,one,two,three,four,five,six,seven,eight,nine,ten,eleven,twelve,rock,around,the,clock,when,what,where,why,who,whose,then,than

Appendix III: SGML/XML

This guidance is meant for technicians or localization engineers with previous knowledge of XML/SGML, and of DTDs if possible. The purpose is to fine-tune PlusTools to prepare files for specific, usually large, projects.

PlusTools contains a task processor with an HTML routine that' editable and usable for tagging SGML or XML documents. Since an HTML document is an SGML document with a specific, universally agreed-upon DTD, PlusTools contains a complete list of HTML tags. XML and SGML documents, on the other hand, are defined by a document or project-specific DTD, so PlusTools must be fine-tuned to match the requirements of these particular DTD.

Choose the HTML standard list to load the standard HTML set of tags. For XML/SGML projects, the tag list must be fine-tuned (use Ins, Del, and Enter on the tag list to add/delete/edit tags.)

If you have a description file (sometimes with an .ini extension) that describes the characteristics of the various user-defined tags (internal, external, group etc): open that file file with a text editor, go to PlusTools' Tags list and Insert all internal tags found in the INI file. Run tagging tests on sample files before starting translation. But even these description files are rarely well-defined: many lack internal tags.

One main purpose when testing is to make sure that External tags do not cut sentences. If, after tagging, they cut sentences in the tagged file (DOC or RTF file) make sure these external tags are defined as Internal rather than External and repeat the process.

29

